Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease.

نویسندگان

  • Meliana Riwanto
  • Sarika Kapoor
  • Daniel Rodriguez
  • Ilka Edenhofer
  • Stephan Segerer
  • Rudolf P Wüthrich
چکیده

Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD). Here we tested whether metabolic reprogramming towards aerobic glycolysis ("Warburg effect") plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+), a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha) and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1) in cystic kidneys of Cy/+ rats compared with wild-type (+/+) rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG) on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day) for 5 weeks resulted in significantly lower kidney weights (-27%) and 2-kidney/total-body-weight ratios (-20%) and decreased renal cyst index (-48%) compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min), BUN (0.69±0.26 vs 0.40±0.10 ml/min) and uric acid (0.38±0.20 vs 0.21±0.10 ml/min), and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting Glycosphingolipid Metabolism to Treat Kidney Disease.

The enhanced expression of glucosylceramide-based glycosphingolipids (GSLs) is a hallmark of many forms of renal disease including diabetic nephropathy, polycystic kidney disease and renal cell carcinoma. A common feature of each of these renal disorders is the preference metabolism via aerobic glycolysis. While aerobic glycolysis is an inefficient way to generate ATP, aerobic glycolysis promot...

متن کامل

Targeting Glycosphingolipid Metabolism to Treat Kidney Disease

The enhanced expression of glucosylceramide-based glycosphingolipids (GSLs) is a hallmark of many forms of renal disease including diabetic nephropathy, polycystic kidney disease and renal cell carcinoma. A common feature of each of these renal disorders is the preference metabolism via aerobic glycolysis. While aerobic glycolysis is an inefficient way to generate ATP, aerobic glycolysis promot...

متن کامل

ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease.

Polycystic kidney disease (PKD) is a common genetic disorder leading to cyst formation in the kidneys and other organs that ultimately results in kidney failure and death. Currently, there is no therapy for slowing down or stopping the progression of PKD. In this study, we identified the disintegrin metalloenzyme 17 (ADAM17) as a key regulator of cell proliferation in kidney tissues of conditio...

متن کامل

Vascular Endothelial Growth Factor (VEGF) Gene Promoter Polymorphisms and Disease Progression in North Indian Cohort with Autosomal Dominant Polycystic Kidney Disease

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by a significant phenotypic variability in progression of the disease. Vascular endothelial growth factor (VEGF) has been reported to play a major role in renal pathophysiology. The aim of the present case-control study was to evaluate the association of two promoter polymorphisms (-2578C>A and -1154G>A) of VEGF gene and ADPK...

متن کامل

Reduction of ciliary length through pharmacologic or genetic inhibition of CDK5 attenuates polycystic kidney disease in a model of nephronophthisis

Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2016